Rohevesiniku import Euroopa Liitu: keerukused ja võimalused
Süsinikuneutraalsuse saavutamiseks nähakse elektrifitseerimisel peamist rolli. Kuid on mitmeid tegevusi, mida ei ole võimalik muuta rohelise elektroni abil süsinikuneutraalseks, vaid mis vajavad rohelist molekuli. Vesinikus nähakse potentsiaali olla see roheline molekul, mis on vajalik süsinikuneutraalsuse saavutamiseks sektorites ja tööstusprosessides, mida ei ole võimalik elektrifitseerida. Euroopa Komisjon hindab, et aastaks 2050 tarbitakse Euroopa Liidus kokku vahemikus 48-72 miljonit tonni vesinikku ja selle derivaate.
Maailma Energeetikanõukogu Euroopa piirkonna liikmesriigid viisid läbi põhjaliku uuringu hindamaks, kuidas sellist rohelise vesiniku tarbimist rahuldada nii 2030 kui ka 2050 aasta kontekstis, võttes arvesse mh. tootmise, transpordi, finantseerimise kulusid ning regulatsiooni mõju.
Kokkuvõte inglise keeles:
Concerns on the environmental impact of how we produce and consume energy have joined the two major traditional energy issues – energy security and affordability. Hydrogen has the potential to become the second main energy vector after electricity for the decarbonisation of energy consumption in end-use sectors. Its role in deep decarbonisation scenarios has been increasing in recent years, together with dedicated roadmaps and strategies that have been published in several countries. This paper explores possible scenarios for consumption and production of decarbonised hydrogen in the European Union (EU), in line with its net-zero greenhouse gas (GHG) emissions goals. It finds that the EU is likely to need to import about half of the estimated 60 million tonnes of decarbonised hydrogen and derivatives it will use by 2050, due to resource constraints and technological choices. Cost estimates for the production and transportation of decarbonised hydrogen are presented for several European and neighbouring countries, from wind, solar photovoltaic (PV) and nuclear power-based electrolysis, as well as steam methane reforming (SMR) with carbon capture utilisation and storage (CCUS) and pyrolysis technologies, out to the 2030 and 2050 time horizons. All these technologies can contribute to the future production of decarbonised hydrogen, provided that they respect stringent life-cycle CO2 emissions limits. Cheaper production from SMR with CCUS and nuclear power can help the initial deployment of a decarbonised market in the medium term, and renewable sources will be essential in the long term both for domestic production and imported hydrogen. Nonetheless, limiting import options would reduce diversification, potentially increasing costs and negatively affecting security of hydrogen supply. Large investments are needed for production and transport infrastructure to import decarbonised hydrogen to the EU, estimated at around $900 billion (around EUR 760 billion) over the next three decades. A set of well-designed, clear and stable standards and regulations for both exporting and importing countries will be needed to ensure that life-cycle CO2 emissions conditions are met and that the necessary investments are made in a timely fashion.
Note: This study was developed under the guidance of a Steering Committee of the European members of the World Energy Council. The views and opinions expressed are solely the views of the author and do not represent a statement of the views of any other person or entity.
Missioon ja eesmärgid
Maailma Energeetikanõukogu Eesti Rahvuskomitee missiooniks on luua rahvusvahelisele koostööle tuginev teaduspõhine keskkond jätkusuutlikku energeetika kujundamiseks Eestis.
WEC ja Eesti ajalugu
Eesti võeti vastu WEC-i liikmeks 29. juunil 1937.aastal Pariisis. Eestit esindas Rahvuslik Jõukomitee eesotsas direktor J. Veeruse ja professor P. Kogermaniga.